Asynchronous Parallel Generating Set Search for Linearly Constrained Optimization

نویسندگان

  • Joshua D. Griffin
  • Tamara G. Kolda
  • Robert Michael Lewis
چکیده

We describe an asynchronous parallel derivative-free algorithm for linearly constrained optimization. Generating set search (GSS) is the basis of our method. At each iteration, a GSS algorithm computes a set of search directions and corresponding trial points and then evaluates the objective function value at each trial point. Asynchronous versions of the algorithm have been developed in the unconstrained and bound-constrained cases which allow the iterations to continue (and new trial points to be generated and evaluated) as soon as any other trial point completes. This enables better utilization of parallel resources and a reduction in overall run time, especially for problems where the objective function takes minutes or hours to compute. For linearly constrained GSS, the convergence theory requires that the set of search directions conforms to the nearby boundary. This creates an immediate obstacle for asynchronous methods where the definition of nearby is not well defined. In this paper, we develop an asynchronous linearly constrained GSS method that overcomes this difficulty and maintains the original convergence theory. We describe our implementation in detail, including how to avoid function evaluations by caching function values and using approximate lookups. We test our implementation on every CUTEr test problem with general linear constraints and up to 1000 variables. Without tuning to individual problems, our implementation was able to solve 95% of the test problems with 10 or fewer variables, 73% of the problems with 11–100 variables, and nearly half of the problems with 100–1000 variables. To the best of our knowledge, these are the best results that have ever been achieved with a derivative-free method for linearly constrained optimization. Our asynchronous parallel implementation is freely available as part of the APPSPACK software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stationarity Results for Generating Set Search for Linearly Constrained Optimization

We derive new stationarity results for derivative-free, generating set search methods for linearly constrained optimization. We show that a particular measure of stationarity is of the same order as the step length at an identifiable subset of the iterations. Thus, even in the absence of explicit knowledge of the derivatives of the objective function, we still have information about stationarit...

متن کامل

A generating set direct search augmented Lagrangian algorithm for optimization with a combination of general and linear constraints

We consider the solution of nonlinear programs in the case where derivatives of the objective function and nonlinear constraints are unavailable. To solve such problems, we propose an adaptation of a method due to Conn, Gould, Sartenaer, and Toint that proceeds by approximately minimizing a succession of linearly constrained augmented Lagrangians. Our modification is to use a 3 derivative-free ...

متن کامل

Active Set Identification for Linearly Constrained Minimization Without Explicit Derivatives

We consider active set identification for linearly constrained optimization problems in the absence of explicit information about the derivative of the objective function. We begin by presenting some general results on active set identification that are not tied to any particular algorithm. These general results are sufficiently strong that, given a sequence of iterates converging to a Karush–K...

متن کامل

An Efficient Asynchronous Parallel Evolutionary Algorithm Based on Message Passing Model for Solving Complex Nonlinear Constrained Optimization

Abstract This study presents an asynchronous parallel evolutionary algorithm based on message passing model (MAPEA) for solving complex function optimization problems with constraints. The MAPEA combines a local search into the global search. The local search is based on Tabu search, and the radius of neighborhood is self-adaptive. The MAPEA is implemented in Parallel Virtual Machine (PVM) prog...

متن کامل

Implementing Generating Set Search Methods for Linearly Constrained Minimization

We discuss an implementation of a derivative-free generating set search method for linearly constrained minimization with no assumption of nondegeneracy placed on the constraints. The convergence guarantees for generating set search methods require that the set of search directions possesses certain geometrical properties that allow it to approximate the feasible region near the current iterate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008